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5 Angle Modulation: FM and PM

5.1. We mentioned in 4.2 that a sinusoidal carrier signal

A cos(2πfct+ φ)

has three basic parameters: amplitude, frequency, and phase. Varying these
parameters in proportion to the baseband signal results in amplitude mod-
ulation (AM), frequency modulation (FM), and phase modulation (PM),
respectively.

5.2. As in 4.61, we will again assume that the baseband signal m(t) is

(a) band-limited to B; that is, |M(f)| = 0 for |f | > B

and

(b) bounded between −mp and mp; that is, |m(t)| ≤ mp.

Definition 5.3. Phase modulation (PM ):

xPM (t) = A cos (2πfct+ φ+ kpm (t))

• max phase deviation:
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Definition 5.4. The main characteristic22 of frequency modulation (FM)
is that the carrier frequency f(t) would be varied with time so that

f(t) = fc + km(t), (65)

where k is an arbitrary constant.

• The arbitrary constant k is sometimes denoted by kf to distinguish it
from a similar constant in PM.

• f(t) is varied from fc − kmp to fc + kmp.

• fc is assumed to be large enough such that f(t) ≥ 0.

Example 5.5. Figure 31 illustrates the outputs of PM and FM modulators
when the message is a unit-step function.158 Chapter 4 ∙ Angle Modulation and Multiplexing
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Comparison of PM and FM modulator
outputs for a unit-step input.
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where Re(⋅) implies that the real part of the argument is to be taken. Expanding $%&(') in a
power series yields

()(') = Re
{
*)

[
1 + %&(') − &2(')

2! −⋯
]
$%2#+)'

}
(4.11)

If the peak phase deviation is small, so that the maximum value of |&(')| is much less than
unity, the modulated carrier can be approximated as

()(') ≅ Re[*)$%2#+)' + *)&(')%$%2#+)']

Taking the real part yields

()(') ≅ *) cos(2#+)') − *)&(') sin(2#+)') (4.12)

The form of (4.12) is reminiscent of AM. The modulator output contains a carrier com-
ponent and a term in which a function of ,(') multiplies a 90◦ phase-shifted carrier. The
first term yields a carrier component. The second term generates a pair of sidebands. Thus,
if &(') has a bandwidth - , the bandwidth of a narrowband angle modulator output is 2- .
The important difference between AM and angle modulation is that the sidebands are pro-
duced by multiplication of the message-bearing signal, & ('), with a carrier that is in phase

Figure 31: Comparison of PM and FM
modulator outputs for a unit-step input.
(a) Message signal. (b) Unmodulated
carrier. (c) Phase modulator output (d)
Frequency modulator output. [15, Fig
4.1 p 158]

22Treat this as a practical definition. The more rigorous definition will be provided in 5.15.

88



• For the PM modulator output,

◦ the (instantaneous) frequency is fc for both t < t0 and t > t0

◦ the phase of the unmodulated carrier is advanced by kp = π
2 radians

for t > t0 giving rise to a signal that is discontinuous at t = t0.

• For the FM modulator output,

◦ the frequency is fx for t < t0, and the frequency is fc+fd for t > t0

◦ the phase is, however, continuous at t = t0.

Example 5.6. With a sinusoidal message signal in Figure 32a, the frequency
deviation of the FM modulator output in Figure 32d is proportional to
m(t). Thus, the (instantaneous) frequency of the FM modulator output is
maximum when m(t) is maximum and minimum when m(t) is minimum.

4.1 Phase and Frequency Modulation Defined 159

(a)

(b)

(c)

(d)

Figure 4.2
Angle modulation with sinusoidal messsage signal. (a) Message signal. (b) Unmodulated carrier. (c)
Output of phase modulator with !("). (d) Output of frequency modulator with !(").

quadrature with the carrier component, whereas for AM they are not. This will be illustrated in
Example 4.1.

The generation of narrowband angle modulation is easily accomplished using the method
shown in Figure 4.3. The switch allows for the generation of either narrowband FM or narrow-
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Figure 4.3
Generation of narrowband angle modulation.

Figure 32: Different modulations of sinu-
soidal message signal. (a) Message signal. (b)
Unmodulated carrier. (c) Output of phase
modulator (d) Output of frequency modula-
tor [15, Fig 4.2 p 159 ]

The phase deviation of the PM output is proportional to m(t). However,
because the phase is varied continuously, it is not straightforward (yet) to
see how Figure 32c is related to m(t). In Figure 36, we will come back to
this example and re-analyze the PM output.
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Figure 5.1–2 Illustrative AM, FM, and PM waveforms.

212 CHAPTER 5 • Angle CW Modulation

carrier amplitude, we modulate the frequency by swinging it over a range of, say,
�50 Hz, then the transmission bandwidth will be 100 Hz regardless of the message
bandwidth. As we’ll soon see, this argument has a serious flaw, for it ignores the dis-
tinction between instantaneous and spectral frequency. Carson (1922) recognized
the fallacy of the bandwidth-reduction notion and cleared the air on that score.
Unfortunately, he and many others also felt that exponential modulation had no
advantages over linear modulation with respect to noise. It took some time to over-
come this belief but, thanks to Armstrong (1936), the merits of exponential modula-
tion were finally appreciated. Before we can understand them quantitatively, we
must address the problem of spectral analysis.

Suppose FM had been defined in direct analogy to AM by writing xc(t) � Ac cos vc(t) t
with vc(t) � vc[1 � mx(t)]. Demonstrate the physical impossibility of this definition by
finding f(t) when x(t) � cos vmt.

Narrowband PM and FM
Our spectral analysis of exponential modulation starts with the quadrature-carrier
version of Eq. (1), namely

(9)

where

(10)xci1t 2 � Ac cos f1t 2 � Ac c1 �
1

2!
 f21t 2 � p d

xc1t 2 � xci1t 2  cos vct � xcq1t 2  sin vct

EXERCISE 5.1–1

car80407_ch05_207-256.qxd  12/8/08  10:49 PM  Page 212

Confirming Pages

Figure 33: Illustrative AM, FM, and PM waveforms. [3, Fig 5.1-2 p 212]

Example 5.7. Figure 33 illustrates the outputs of AM, FM, and PM mod-
ulators when the message is a triangular (ramp) pulse.

AM

PM

Sudden drop in the value of 

Sudden change in the phase

In this region,  is increasing

Higher but constant frequency.

cos 2

cos 2

> 0

cos 2 2  

,

Figure 34: Explaining
PM waveform in Figure
33.

To understand more about FM, we will first need to know what it actually
means to vary the frequency of a sinusoid.
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5.1 Instantaneous Frequency

Definition 5.8. The generalized sinusoidal signal is a signal of the form

x(t) = A cos (θ(t)) (66)

where θ(t) is called the generalized angle.

• The generalized angle for conventional sinusoid is θ(t) = 2πfct+ φ.

• In [3, p 208], θ(t) of the form 2πfct + φ(t) is called the total instan-
taneous angle.

Definition 5.9. If θ(t) in (66) contains the message information m(t), we
have a process that may be termed angle modulation.

• The amplitude of an angle-modulated wave is constant.

• Another name for this process is exponential modulation.

◦ The motivation for this name is clear when we write x(t) asARe
{
ejθ(t)

}
.

◦ It also emphasizes the nonlinear relationship between x(t) and
m(t).

• Since exponential modulation is a nonlinear process, the modulated
wave x(t) does not resemble the message waveform m(t).

5.10. Suppose we want the frequency fc of a carrier A cos(2πfct) to vary
with time as in (65). It is tempting to consider the signal

A cos(2πg(t)t), (67)

where g(t) is the desired frequency at time t.

Example 5.11. Consider the generalized sinusoid signal of the form 67
above with g(t) = t2. We want to find its frequency at t = 2.

(a) Suppose we guess that its frequency at time t should be g(t). Then,
at time t = 2, its frequency should be t2 = 4. However, when com-
pared with cos (2π(4)t) in Figure 35a, around t = 2, the “frequency”
of cos(2π

(
t2
)
t) is quite different from the 4-Hz cosine approximation.

Therefore, 4 Hz is too low to be the frequency of cos(2π
(
t2
)
t) around

t = 2.
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1

(a) (b)

Figure 35: Approximating the frequency of cos(2π (t2) t) by (a) cos (2π(4)t) and (b)
cos (2π(12)t).

(b) Alternatively, around t = 2, Figure 35b shows that cos (2π(12)t) seems
to provide a good approximation. So, 12 Hz would be a better answer.

Definition 5.12. For generalized sinusoid A cos(θ(t)), the instantaneous
frequency 23 at time t is given by

f(t) =
1

2π

d

dt
θ(t). (68)

Example 5.13. For the signal cos(2π
(
t2
)
t) in Example 5.11,

θ (t) = 2π
(
t2
)
t

and the instantaneous frequency is

f (t) =
1

2π

d

dt
θ (t) =

1

2π

d

dt

(
2π
(
t2
)
t
)

= 3t2.

In particular, f (2) = 3× 22 = 12.

5.14. The instantaneous frequency formula (68) implies

θ(t) = 2π

∫ t

−∞
f(τ)dτ = θ(t0) + 2π

∫ t

t0

f(τ)dτ. (69)

23Although f(t) is measured in hertz, it should not be equated with spectral frequency. Spectral frequency
f is the independent variable of the frequency domain, whereas instantaneous frequency f(t) is a time-
dependent property of waveforms with exponential modulation.
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First-order (straight-line) 
approximation/linearization

23

How does the formula work?

Technique from Calculus: first-order (tangent-line) 
approximation/linearization

First-order (straight-line) 
approximation/linearization

24

How does the formula work?

Technique from Calculus: first-order (tangent-line) 
approximation/linearization

When we consider a function near a particular time, say, , 
the value of the function is approximately

Therefore, near ,

Now, we can directly compare the terms with .

t t t t t t t t t t

t t t t t t



First-order (straight-line) 
approximation/linearization
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For example, for t near t = 2,
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First-order (straight-line) 
approximation/linearization
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For example, for t near t = 2,
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First-order (straight-line) 
approximation/linearization
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For example, for t near t = 2,

tt
t t t t t

Same idea

28

Suppose we want to find .

Let .

Note that .

Approximation: 

15.9 is near 16.

MATLAB: >> sqrt(15.9)
ans =

3.987480407475377



5.2 FM and PM

Definition 5.15. Frequency modulation (FM ):

xFM (t) = A cos

2πfct+ φ+ 2πkf

t∫
−∞

m (τ)dτ

 . (70)

Its instantaneous frequency is

f (t) = fc + kfm (t) .

5.16. Phase modulation (PM ): The phase-modulated signal is defined
in Definition 5.3 to be

xPM (t) = A cos (2πfct+ φ+ kpm (t))

When m(t) is differentiable, the instantaneous frequency of xPM(t) is

(71)

Therefore, the instantaneous frequency of the PM signal varies in pro-
portion to the slope of m(t).

1

cos 2

PM

FM

Figure 36: A revisit of
the PM signal in Figure
32.
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In particular, the instantaneous frequency of the PM signal is maximum
when the slope of m(t) is maximum and minimum when the slope of m(t)
is minimum.

Example 5.17. Sketch FM and PM waves for the modulating signal m(t)
shown in Figure 37a.

1

 FMx t  PMx t

Figure 37: FM and PM waveforms generated from the same message.

5.18. The “indirect” method of sketching xPM(t) (using ṁ(t) to frequency-
modulate a carrier) works as long as m(t) is a continuous signal. If m(t)
is discontinuous, this indirect method fails at points of discontinuities. In
such a case, a direct approach should be used to specify the sudden phase
changes. This is illustrated in Example 5.20.

5.19. Summary: To sketch xPM(t) from m(t),

(a) in the region where m(t) is differentiable, vary the the instantaneous
frequency of xPM(t) in proportion to the slope of m(t)

(b) at the location where m(t) is discontinuous (has a jump), calculate the
amount of phase shift from the jump amount:

∆θ = θ(t+0 )− θ(t−0 ) = kp
(
m(t+0 )−m(t−0 )

)
= kp∆m.
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Example 5.20. Sketch FM and PM waves for the modulating signal m(t)
shown in Figure 38a.

1

 FMx t  PMx t

Figure 38: FM and PM waveforms generated from the same message.

5.21. Generalized angle modulation (or exponential modulation):

x(t) = A cos (2πfct+ θ0 + (m ∗ h)(t))

where h is causal.

(a) Frequency modulation (FM ): h(t) = 2πkf1[t ≥ 0]

(b) Phase modulation (PM ): h(t) = kpδ(t).
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5.22. Relationship between FM and PM:

• Equation (70) implies that one can produce frequency-modulated signal
from a phase modulator.

• Equation (71) implies that one can produce phase-modulated signal
from a frequency modulator.

• The two observations above are summarized in Figure 39.

 

( )FMx t  ( )m t  

 

( )
t

m dτ τ
−∞
∫  

Phase 
Modulator ∫  

Frequency modulator 

( )PMx t  ( )m t  

 

( )m t′  Frequency 
Modulator 

 d
dt

 

Phase modulator 

Figure 39: With the help
of integrating and dif-
ferentiating networks, a
phase modulator can pro-
duce frequency modula-
tion and vice versa [5, Fig
5.2 p 255].

• By looking at an angle-modulated signal x(t), there is no way of telling
whether it is FM or PM.

◦ Compare Figure 32c and 32d in Example 5.6.

◦ In fact, it is meaning less to ask an angle-modulated wave whether
it is FM or PM. It is analogous to asking a married man with
children whether he is a father or a son. [6, p 255]
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5.23. So far, we have spoken rather loosely of amplitude and phase modula-
tion. If we modulate two real signals a(t) and φ(t) onto a cosine to produce
the real signal x(t) = a(t) cos(ωct + φ(t)), then this language seems unam-
biguous: we would say the respective signals amplitude- and phase-modulate
the cosine. But is it really unambiguous?

The following example suggests that the question deserves thought.

Example 5.24. [9, p 15] Let’s look at a “purely amplitude-modulated”
signal

x1(t) = a(t) cos(ωct).

Assuming that a(t) is bounded such that 0 ≤ a(t) ≤ A, there is a well-
defined function

θ(t) = cos−1

(
1

A
x1(t)

)
− ωct.

Observe that the signal

x2(t) = A cos (ωct+ θ(t))

is exactly the same as x1(t) but x2(t) looks like a “purely phase-modulated”
signal.

5.25. Example 5.24 shows that, for a given real signal x(t), the factorization
x(t) = a(t) cos(ωct+φ(t)) is not unique. In fact, there is an infinite number
of ways for x(t) to be factored into “amplitude” and “phase”.
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